Hydrological modeling with a dynamic neural fuzzy inference system

Talei A., Chua L.H.C., Quek C., 10th International Conference on Hydroinformatics, 14-18 Jul 2012, Hamburg, Germany, 2012

Dynamic Evolving Neural-Fuzzy Inference System (DENFIS) is a Takagi-Sugeno-type fuzzy inference system for online learning which can be applied for dynamic time series prediction. Data from Heshui catchment (2,275 km2) which is rural catchment in China, comprising daily time series of rainfall and discharge from January 1, 1990 to January 21, 2006 were analyzed. Rainfall and discharge antecedents were the inputs used for the DENFIS and ANFIS models and the output was discharge at the present time. DENFIS model results were compared with the results obtained from the physically-based University Regina Hydrologic Model (URHM) and an Adaptive Network-based Fuzzy Inference System (ANFIS) which employs offline learning. Our analysis shows that DENFIS results are better or at least comparable to URHM, but almost identical to ANFIS.